Analogue-based approaches in anti-cancer compound modelling: the relevance of QSAR models

نویسندگان

  • Mohammed Hussaini Bohari
  • Hemant Kumar Srivastava
  • Garikapati Narahari Sastry
چکیده

BACKGROUND QSAR is among the most extensively used computational methodology for analogue-based design. The application of various descriptor classes like quantum chemical, molecular mechanics, conceptual density functional theory (DFT)- and docking-based descriptors for predicting anti-cancer activity is well known. Although in vitro assay for anti-cancer activity is available against many different cell lines, most of the computational studies are carried out targeting insufficient number of cell lines. Hence, statistically robust and extensive QSAR studies against 29 different cancer cell lines and its comparative account, has been carried out. RESULTS The predictive models were built for 266 compounds with experimental data against 29 different cancer cell lines, employing independent and least number of descriptors. Robust statistical analysis shows a high correlation, cross-validation coefficient values, and provides a range of QSAR equations. Comparative performance of each class of descriptors was carried out and the effect of number of descriptors (1-10) on statistical parameters was tested. Charge-based descriptors were found in 20 out of 39 models (approx. 50%), valency-based descriptor in 14 (approx. 36%) and bond order-based descriptor in 11 (approx. 28%) in comparison to other descriptors. The use of conceptual DFT descriptors does not improve the statistical quality of the models in most cases. CONCLUSION Analysis is done with various models where the number of descriptors is increased from 1 to 10; it is interesting to note that in most cases 3 descriptor-based models are adequate. The study reveals that quantum chemical descriptors are the most important class of descriptors in modelling these series of compounds followed by electrostatic, constitutional, geometrical, topological and conceptual DFT descriptors. Cell lines in nasopharyngeal (2) cancer average R2 = 0.90 followed by cell lines in melanoma cancer (4) with average R2 = 0.81 gave the best statistical values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors

Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...

متن کامل

Relevance vector machine and multivariate adaptive regression spline for modelling ultimate capacity of pile foundation

This study examines the capability of the Relevance Vector Machine (RVM) and Multivariate Adaptive Regression Spline (MARS) for prediction of ultimate capacity of driven piles and drilled shafts. RVM is a sparse method for training generalized linear models, while MARS technique is basically an adaptive piece-wise regression approach. In this paper, pile capacity prediction models are developed...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

Application of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives

Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...

متن کامل

QSAR Study on Anti-HIV-1 Activity of 4-Oxo-1,4-dihydroquinoline and 4-Oxo-4H-pyrido[1,2-a]pyrimidine Derivatives Using SW-MLR, Artificial Neural Network and Filtering Methods

Predictive quantitative structure–activity relationship was performed on the novel 4-oxo-1,4-dihydroquinoline and 4-oxo-4H-pyrido[1,2-a]pyrimidine derivatives to explore relationship between the structure of synthesized compounds and their anti-HIV-1 activities. In this way, the suitable set of the molecular descriptors was calculated and the important descriptors using the variable selections ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011